MAST30001 2013, Assignment 1 Lecturer: Nathan Ross

Instructions: Answer the following questions. Justify all work and give clear, concise explanations, using prose when appropriate. Clarity, neatness and style count.

- 1. Let X and Y be independent and have exponential distributions with common rate λ (recall this means they each have density $\lambda e^{-\lambda x}$ for x > 0) and let U = X/(X + Y) and V = (X + Y).
 - (a) What is the marginal density of U?
 - (b) What is the joint pdf of (U, V)?
 - (c) Are U and V independent?
- 2. Let N be a positive geometric random variable $(\mathbb{P}(N = j) = p(1 p)^{j-1}, j = 1, 2, ...)$ and let the distribution of T given N = n be gamma with parameter n (given N = n, T has density proportional to $x^{n-1}e^{-x}$).
 - (a) Without computing the density of T, can you find $\mathbb{E}T$?
 - (b) What is the joint distribution of (T, N)?
 - (c) What is the density of T? Use the density to compute $\mathbb{E}T$ and check that it agrees with your answer in part (a).
- 3. Let A_1, A_2, \ldots be an iid sequence of random variables uniform on the set $\{2, 3\}$ and for $n \ge 1$ let $B_n = A_{n+1}A_n$. Is $(B_n)_{n\ge 1}$ a Markov chain? If so then analyze its state space (reducibility, periodicity, recurrence, etc) and derive its long term behavior.
- 4. Let $(X_n)_{n\geq 1}$ be a Markov chain with state space $\{1, \ldots, k\}$ for some $k \geq 1$. Show that if *i* and *j* communicate, then the probability that the chain started in state *i* reaches state *j* in *k* steps or fewer is greater than 0.
- 5. A Markov chain has transition matrix

$$\left(\begin{array}{cccccc} 1/3 & 0 & 2/3 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 3/4 & 0 & 1/4 & 0 & 0 \\ 0 & 3/4 & 0 & 1/4 & 0 \\ 1/3 & 0 & 1/3 & 0 & 1/3 \end{array}\right)$$

Analyze the state space (reducibility, periodicity, recurrence, etc), and discuss the chain's long run behavior.

6. For i = 0, ..., N let $0 < p_i = 1 - q_i < 1$ and let the Markov chain (X_n) with state space $\{0, ..., N\}$ have transition matrix

(9	0	p_0	0	0	0		0	\
q	1	0	p_1	0	0	• • •	0	
(0	q_2	0	p_2	0	• • •	0	
	:		۰.	·	·		÷	
(C	• • •	0	q_{N-2}	0	p_{N-2}	0	
(0	• • •	0	0	q_{N-1}	0	p_{N-1}	
\mathbf{V}	C	• • •	0	0	0	q_N	p_N]

- (a) Analyze the state space of the chain (reducibility, periodicity, recurrence, etc).
- (b) If the chain starts at state 0, describe the long run behavior of the chain.
- (c) If the chain starts at a uniformly chosen state, describe the long run behavior of the chain.
- (d) Given the chain is in state 2 what is the expected number of steps until the chain returns to state 2?
- (e) Now assume that $q_N = p_1 = 1$. Analyze the state space of the chain.
- 7. A possum runs from corner to corner along the top of a square fence. Each time he switches corners, he chooses among the two adjacent corners, choosing the corner in the clockwise direction with probability 0 and the corner in the counterclockwise direction with probability <math>1 - p. Model the possum's movement among the corners of the fence as a Markov chain, analyze its state space (reducibility, periodicity, recurrence, etc), and discuss its long run behavior.